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This paper studies the effects of uncertainty on the timing of adoption of a new technology in a 
duopoly. Firms are uncertain of the innovative capabilities of their rivals and about the 
profitability of adoption. These features lead to a richer and, in some respects, more plausible 
theory of adoption, in which rents from delayed adoption are always realized, and returns are 
not equalized across adoption times. 

1. Introduction 

In the past decade, an extensive literature has developed on the diffusion 
of new technologies. There are two main strands. The first is exemplified by 
the decision-theoretic models of Balcer and Lippman (1984), Bhattacharya, 
Chatterjee and Samuelson (1988), Jensen (1982, 1988), and McCardle (1985). 
These papers seek to explain why firms frequently delay adoption of new 
technologies and, in some cases, fail to adopt altogether. The explanations 
focus on uncertainty about the innovation process and the desire of firms to 
learn more about their returns before committing themselves to a new 
technology. 

The second strand focuses on externalities in the diffusion process. Because 
adoption generally increases the profit flow of the adopter at the expense of 
its rivals, the decision by a firm of whether and when to adopt depends in 
part upon the adoption decisions of its rivals. Benoit (1985) and Reinganum 
(1983) examine how this interaction determines the likelihood of adoption in 
a duopoly model where returns are stochastic. The timing issue is the subject 
of a number of papers. Fudenberg and Tirole (1985), Gilbert and Harris 
(1984), Reinganum (1981a, b) study symmetric contests, and Eaton and 
Lipsey (1979) and Gilbert and Newberry (1982) study asymmetric contests 
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between an incumbent firm and an entrant. Reinganum shows that, if firms 
can precommit to adoption times, they adopt at different times, and the firm 
which adopts earlier earns more rents than firms which adopt later. The 
other authors argue that the precommitment solution is not reasonable, since 
firms can observe adoption by a rival and will want to respond optimally to 
that event. The prediction of these models is that one of the firms adopts 
preemptively as soon as it is profitable for its rival to do so. Adoption is 
diffused, but rents from delayed adoption due to learning or growing demand 
or declining adoption costs are dissipated. The exception is the work of 
Fudenberg and Tirole who show that, if preemption gains are relatively 
small, then firms may be able to avoid the preemption outcome and adopt 
jointly at some later date. 

The purpose of this paper is to show that, even if preemption gains are 
large, rent dissipation does not occur if firms have arbitrarily small doubts 
about each other’s innovative capabilities. More precisely, I borrow from 
Benoit (1985) the idea that there are two types of firms: innovators and 
imitators. Each firm knows only its own type, so each cannot be sure that its 
rival wants to adopt first. Innovator types use these doubts as a basis for 
cooperation. They tacitly agree to delay adoption for a period of time, after 
which they develop reputations as imitators by randomizing. The qualitative 
features of the equilibrium are similar to those of the precommitment 
solution: a substantial fraction of the rents from delayed adoption are 
realized and the first adopter earns more than the second adopter. 

This point takes on a particular significance in view of the experimental 
work by McKelvey and Palfrey (1991). They report on a series of experi- 
ments in which individuals play a version of a game known as the centipede 
game. This game is essentially a discrete version of the adoption game 
considered in this paper. It possesses a unique equilibrium outcome in which 
the game ends with preemption at the first move. The experimental results 
were not consistent with this prediction. It occurred in only 37 of 662 games. 
However, the authors found that a model in which subjects believed that 
there is a small chance that their opponent is an altruist (i.e., a player who 
does not move first) explained the data very well. 

The paper is organized as follows. In section 2, I introduce the duopoly 
model, which is essentially a parameterized version of the Reinganum- 
Fudenberg-Tirole (R-FT) model. In section 3, I characterize the equilibrium 
of the model when preemption gains are large and firms have doubts about 
the innovative capabilities of their rival. In section 4, I discuss the effects of 
uncertain profitability. Concluding remarks follow in section 5. 

2. The model 

There are two firms in the industry, indexed by i= 1,2. At time 0, a new, 
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cost reducing technology is announced. Each firm must choose when to 
adopt the new technology. The undiscounted cost of purchasing the new 
technology and bringing it on line by time t declines with time. The cost 
function is assumed to be the same for each firm and takes the form 
c(t) =eP*, where a>0 is the rate of decline parameter. 

The profit flows are defined as follows: rce(O) is the profit flow of each firm 
when both firms are using the old technology; rc,,(l) is the profit flow of firm 
i when firm j has adopted the new technology and firm i has not; rcl(l) is the 
profit flow of firm i when it has adopted the new technology and firm j has 
not; 7c,(2) is the profit flow of firm i when both firms have adopted the new 
technology. Each firm discounts future revenues at rate 6. 

With some modifications, I adopt the Reinganum-Fudenberg-Tirole 
assumptions on profit flows. Assumption (Al) ranks the profit flows. 

0<zn,(1)<7r,(0)<71~(2)<71r(1). (Al) 

All profit flows are positive. Adopting the new technology always increases 
the profit flow of the adopter and decreases the profit flow of the 
nonadopter. Finally, the new technology generates higher profit flows than 
the old technology even after both firms have adopted it. Hence, if adoption 
costs are low, both firms should adopt the technology at some point. 

R-FT also impose the following restriction: 

(9 7-h(1) -no(O) >742)-7d1); 
(ii) 7r1( 1) - 7c0(0) < 6 + c(. (A2) 

Condition (i) states that the increase in profit rates due to adopting first 
exceed those of adopting second. Condition (ii) states that the increase in 
profit flow to the first adopter is less than the instantaneous gain from 
waiting at time 0 if adoption costs are low. Thus, if firm i waits at time 0, 
firm j has no incentive to preempt. 

A simple way of introducing uncertainty about a rival’s willingness to 
adopt first into the R-FT model is to assume that each firm believes that 
there is some chance that its rival is not an innovator, but an imitator. An 
imitator type never adopts first. However, after the other firm has adopted, it 
has the same technological possibilities as that firm. Consequently, its 
behavior as a follower is the same as that of an innovator. The interpretation 
here is that an imitator does not possess the requisite physical and human 
capital to initiate adoption, but it can duplicate the efforts of a rival once 
that firm has adopted. 

Following Fudenberg and Tirole, I assume that firms can observe their 
rival’s actions and respond immediately if they so choose. Thus, neither firm 
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can precommit to an adoption time, but must behave optimally at each 
instant of time given its type and the history of actions taken prior to that 
time. Note that the decision problem of each firm after its rival has adopted 
first is nonstrategic. Hence, it will be convenient to first solve for the optimal 
strategy of a follower. That is, suppose firm j adopts at time t and firm i has 
not. Then firm i will want to adopt at time t if and only if the increase in 
profit flow is at least as great as the opportunity cost of adoption. Let p 
denote the earliest time at which this event occurs. It solves the equation, 

7L,(2)-7c710(1)=(a+6)e-“? (2.1) 

It follows from Assumption (A2) that eq. (2.1) has a solution. The optimal 
response for each firm i as a follower can then be expressed as follows: 

z(t)=t if tzii: 

?’ otherwise. (2.2) 

Notice that z(.) is not indexed by type, since an imitator is assumed to 
behave in exactly the same way as an innovator when it is a follower. 

In evaluating the profitability of adopting now rather than later, each firm 
anticipates its rival’s optimal response. Hence, given (2.2), returns to adopting 
first at time t for an innovator type are 

r(t) 

L(t)=710(0)(I-e-“‘)/6-ee-‘d+a”+ s 7c,(l)ems”ds+ 7 z,(2)e-‘“ds. 
t r(t) 

Prior to adoption at time t, the innovator firm earns z,(O). At time t, it 
adopts first and incurs adoption costs equal to e-@. It then earns n,(l) until 
time z(t), after which its profit flow falls to z,(2) due to adoption by firm j. 
All cash flows are discounted back to time 0. 

If firm j leads at time t, the returns to firm i when it is an innovator are 

Hf) 

F(t)=~O(0)(1-e-6’)/6-ee-‘6+“““‘+ s zno(l)e-‘“ds+ ~z,(2)e-‘“ds. 
t r(t) 

It earns ~~(0) prior to t, ~(1) until time z(t), at which time it switches to the 
new technology at a cost equal to e-ar(t), and earns z,(2) forever after. 

Finally, if both firms adopt simultaneously at time t, the expected returns 
to each firm are 
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I shall formalize the game using the normal form rather than the extensive 
form. A (pure) strategy for firm i when it is an innovator is a map from 
CO, ~0) to (0, l}, w h ere 0 denotes ‘wait’ and 1 denotes ‘adopt’. It specifies the 
action which firm i intends to take at each instant of time if no firm as 
adopted previously. In the normal form, however, the only aspect of an 
innovator’s strategy that matters is the earliest time at which it plans to 
adopt conditional on neither firm adopting prior to that time. Let t’ denote 
this time for an innovator firm i. Its behavior at times after t’ is not relevant, 
since it has no effect on its payoffs or those of firm j. Consequently, there is 
no loss of generality in referring to t’ as the strategy of firm i when it is an 
innovator.’ Letting 4 denote each firm’s belief that its rival is an innovator, 
the expected payoffs to firm i as an innovator from the strategy pair (t’, t’) is 

: 

L( ti) if tic tj 

Pi(ti, tj)= (l-q)M(t’)+qL(t’) if t’=tj 

(l-q)F(tj)+qL(t’) ift’>tj. 

In what follows, it will be important to permit innovator types to 
randomize. Since, in the normal form, the space of pure strategies for an 
innovator type can be defined as R,, a mixed strategy can be represented by 
a distribution function Gi.2 If the domain of the payoff functions is extended 
to the set of all pairs of mixed strategies in the obvious way, then a strategy 
combination (@, G”) is an equilibrium if Pi<@, @) zP’(G’, @) for all mixed 
strategies G’, i= 1,2 and i# j. For the remainder of the paper, (G1, G2) will 
refer to an equilibrium combination, and r’(t) will denote the probability that 
firm i adopts at exactly time t when it is an innovator. 

The main reason for using the normal form rather than the extensive 
forms is that mixed strategies can be defined on R,, rather than on a 
function space. (See Fudenberg and Tirole, and also Bergin (1988), Simon 
and Stinchcombe (19X9), Simon (1987) for a more technical discussion of the 
problems of formulating continuous time games such as the above in the 
extensive form.) However, one of the problems with the normal form is that 
it admits equilibria in which players make empty threats. This is the main 
motivation for using the extensive form and associated solution concepts. 
Fortunately, for the case at hand, the normal form is adequate. The reason is 
that the probability of reaching any time t is at least q2, which is positive. 

‘More precisely, t’ is a pure strategy in the reduced normal form. This is obtained from the 
normal form by deleting duplicate strategies (i.e., those which yield the same payoffs). 

‘By a probability distribution, I mean any right-continuous, nondecreasing function G from 
(-co, co] to [0, l] with G(t)=0 for t<O and G(co)= 1. The probability of the event that a firm 
does not adopt is defined as 1 -lim,,, G(r). 
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Fig. lb. 

Hence, each firm must anticipate having to play the action prescribed by its 
strategy for that time if it plans not to adopt before then. When this is the 
case, Nash equilibrium rules out incredible threats. 

3. Reputation building when preemption gains are large 

Fudenberg and Tirole have demonstrated that there are two possible 
configurations for the return functions given in the previous section. These 
are depicted in figs. la and lb, which are adapted from their article. Recall 
that pis the first time that the optimal response to adoption by a rival is to 
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adopt an instant later. Thus, L, F, and M are identical after 2 They are 
increasing at ;i because the rate of decline in adoption costs exceeds the 
increase in net profit flow from switching to the new technology. After T,, 

the benefits from switching are less than those from waiting. Hence, T, is a 
local maximum for the return functions. 

Prior to 2 both the returns to following and leading exceed those from 
tying. The former because the best response to adoption at t is to wait until 
? to adopt instead of at t, and the latter because the returns to adopting first 
are an increasing function of the adoption time of the follower. Moreover, F 
is increasing prior to ? since the length of time during which the follower is 
at a cost disadvantage decreases with the adoption time of the leader. FT 
shows that the assumptions given above (in particular, A2(i)) imply that L 
has a local maximum at Tl and, at that time, preemption gains are positive. 
The intuition is that if a firm waits until later to lead, the period of cost 
advantage is shorter, and this can cause returns to leading to fall even 
though adoption costs are lower. Note that, since Assumption A2(ii) implies 
that F(0) exceeds L(O), it follows that there exists a time prior to Tl when the 
returns to leading and following are identical. This time is denoted as To. 

In each of the cases depicted in fig. 1, there is a period of time in which 
the firms have an incentive to preempt, but where preemption involves 
forgoing gains from declining adoption costs. Can the firms avoid the 
dissipation of rents from early adoption by tacitly agreeing to delay adoption 
until some time after To? In the absence of any uncertainty about firm type, 
FT have shown that the answer to this question depends upon when L 

achieves a global maximum. In fig. la, it occurs before 2 and in this case, 
rents are dissipated. The equilibrium outcome consists of one of the firms 
preempting at To and the other firm adopting at !? In fig. lb, the global 
maximum occurs after ;i; and in this case, firms can avoid competing away 
the rents - joint adoption at time T, is an equilibrium outcome.3 This 
situation is likely to occur if the optimal response of the follower to adoption 
by the other firm does not involve a long delay. 

The main point of this section is to show that innovator firms can tacitly 
agree to delay adoption in situations such as those depicted in fig. la if they 
have arbitrarily small doubts about the innovative capabilities of their rivals. 
The intuition behind this result is best given in a discretized version of the 
game. Suppose firms can only move at times A units apart and firm i is 
supposed to adopt at To whenever it is as an innovator. To ensure that firm i 

has no incentive to wait at To, an innovator firm j must threaten to adopt at 
To + A. This strategy is clearly an optimal response for tit-m j if it is certain 
that firm i will adopt at To. However, it is not optimal if firm j has some 

3The model possesses multiple equilibria, a continuum of joint adoption equilibria and the 
preemption equilibrium. FT present several arguments for selecting joint adoption at Tz as the 
‘reasonable’ equilibrium of the game. 
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doubts about firm i’s innovative capabilities. In that case, observing no 
adoption at TO would lead firm j to conclude that firm i is an imitator. 
Given this belief, its optimal response is to wait until Tl to adopt. This in 
turn would give firm i an incentive to behave like an imitator even when it is 
not. A similar argument rules out strategies in which innovator firms are 
certain to adopt before Tl - A. Thus, in any equilibrium, the event in which 
innovator firms delay adoption until period T,--A must occur with positive 
probability. 

What then is the equilibrium? In the appendix, I show that the search for 
an equilibrium in the continuous time game can be restricted to the set of 
distribution functions in which both innovator firms wait until some time r 
after TO, and then randomize continuously until either one of the firms 
adopts or time Tl is reached. To determine the equilibrium strategies, recall 
from the definition of a mixed strategy equilibrium that each player must be 
indifferent between any pair of pure strategies in the support of the mixture. 
In our context, this implies that P’(t,Gj) has to be constant on the interval 
(7, Tl). Differentiating with respect to t then yields 

o=(1-cw(t) CF(t)-L(t)l+C(l-q)(l--G’(t))+qlL(t). (3.1) 

Let $(r) denote the hazard rate of an innovator firm j at time t (i.e., 
p’(t) = [dGJ( t)/&]/[ 1 - G’(t)]), and let q’(t) denote firm j’s reputation at time t. 
Applying Bayes rule, 

q’(t) = cm -4x1 -Q(t)) + 41. (3.2) 

Substituting (3.2) into (3.1) yields the differential equation for G’: 

C(t)= -&t)[(l-qj(t))(F(t)--L(t))]. (3.3) 

This equation states that, conditional on reaching time t, $(t) must equate 
the instantaneous gain from delay to the expected marginal cost from 
waiting. The gain from waiting is measured by E, which is increasing, and 
the expected cost of waiting is given by the product of the value of the 
preemption losses, (F(t) -L(t)), and the instantaneous change in the prob- 
ability of preemption, (1 -qj(t))$(t). Notice that the differential equation is 
well-behaved on any interval where returns from leading are different from 
the returns from following. 

When firm j randomizes according to a strategy such as the one defined 
by (3.3), its reputation, assuming it does not preempt, changes according to 
the differential equation 

dq’/dt=$(t)q’(t)(l -qj(t)). (3.4) 
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Eq. (3.4) is obtained from (3.2) by differentiation. Note that $(t) is strictly 
increasing with time as long as $(t) is positive. If firm j adopts at time t, 
then firm j is revealed as an innovator, and q’(t) ‘jumps’ downward to 0 an 
instant later. 

The pair of differential eqs in (3.3) and (3.4) determine the rates of change 
in firm j’s reputation and probability of adoption. They can be solved to 
obtain firm j’s equilibrium strategy as well as the time path for its 
reputation. Using (3.3) to substitute for $(t) in eq. (3.4) yields 

dq’(t)/dt= -qj(t)L(t)/[li(t)-L(t)]. (3.5) 

Integrating both sides of eq. (3.5) on an interval (z,t), 

log&) -log& = -5 ZQ)/[F(s) -L(s)] ds. 
T 

(3.6) 

Exponentiating both sides of (3.6), solving for q’(t), and imposing the 
boundary condition $(z) = 4 then gives 

4%) = 4/Z(r, t), (3.7) 

where Z(r, t) = exp{j: X(s)/[F(s) -L(s)] ds}. Finally, substituting (3.7) into (3.3), 
solving for V(t), and imposing the boundary condition G’(r) = 0 yields 

G’(t) = 1 - exp j E(s)/[(F(s) - Z&))( 1 - q/Z(z, s))] ds . 
T 

(3.8) 

What remains to be determined is the value of z. Equilibrium requires that 
each innovator firm adopts with probability 1 by time 7”. Consequently, if 
TI is reached and no firm has adopted, each firm is certain that the other 
firm is an imitator type. Imposing this condition on eq. (3.5) implies that z 
must solve the equation q=Z(z, TI). It is easily checked that Z(t, TI) is 
monotone increasing in t so, if a solution exists, it is unique. To establish 
existence, note first that E(t) is bounded and F’(t) is positive. Using 
L’Hospital’s rule, this implies that L(t)/[L(t)-F(t)] > l/t near T,, which in 
turn implies that lim, 1 To Z(t, TJ = 0. Since lim, t T, Z(t, TJ = 1, it follows that a 
solution exists. 

Proposition 1. Suppose TI is a global maximum for L. Then a unique 
equilibrium exists in which for each i= 1,2, G’ satisfies eq. (3.8) on an interval 
[z, TJ where G’(z) =0 and z solves q=Z(r, TI). 

Proposition 1 states that, in situations where preemption gains are large 
and firms entertain doubts about the willingness of their rival to adopt first, 
there is a unique equilibrium in which each innovator firm does not adopt 
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prior to some time z between T, and Tl. After z, each innovator firm 
randomizes continuously until one of them adopts. Each is certain to adopt 
by Tl. Since adoption occurs after T,, rents are positive for each firm. Ex 
ante returns are the same for each firm, but ex post returns are not equalized 
across firms, since the leader earns a higher payoff than the follower. 

What are the factors affecting the degree of cooperation which can be 
sustained? To answer this question, suppose we approximate the returns to 
leading and following on [T,, Tl] by the linear functions z(t) = a~, F(t) = bt, 
where a and b are positive rates of increase, and a exceeds b. Applying 
Proposition 1 yields, 

z = Tq’” + W/a, 

where T is the length of time between Tl and T,. Thus, the fraction of time 
in which firms tacitly agree not to adopt increases with the probability of 
being an imitator, and decreases with the rate of change in preemption rents, 
(a-b). Notice that the period of cooperation can be quite long even when 4 
is small. This is likely to occur when the rate of decline in adoption costs is 
relatively large, for this would imply a small value for (a-b) and a large 
value for 7: 

Of some interest is the question of whether the FT equilibrium can be 
justified as the limit of a sequence of equilibria of incomplete information 
games. The answer is yes. As 4 gets small, z approaches T,, and all of the 
probability mass of G’ is concentrated in an arbitrarily small interval near 
T,. The limiting distribution over outcomes converges (weakly) to a distribu- 
tion which places one-half of its mass on the event in which firm 1 adopts at 
T, and firm 2 adopts at il: and one-half on the event in which the roles of 
the two firms are reversed. Notice, however, that the strategies converge to 
functions which are not right-continuous, since they are equal to zero at t = 0 
and 1 at t ~0. Hence, the limit of the equilibrium distributions is not an 
equilibrium in the limit game. It is this nonexistence result in the space of 
distribution functions that forced FT to extend the strategy space of a player 
i to include functions that represents the ‘intensity’ with which she moves at 
times ‘just after’ G,(t) jumps to one. 

4. Uncertain profitability 

The game-theoretic papers on the timing problem have all assumed that 
adoption is certain to be a success. But, as McCardle notes, ‘the history of 
innovation is replete with headstones of failed inventions, etched with the 
names of (defunct) firms which attempted to employ them’. Indeed, this 
uncertainty is the primary focus of the learning models. 

How does the possibility of failure effect competition over adoption times? 
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To give some precision to the discussion, suppose the costs of adoption take 
the form 

where 8 is a Bernoulli random variable that takes on value k with 
probability p and 0 with probability 1 --p. The value of 8 is public 
knowledge after the first adoption and k is assumed to be larger than 
[7c1(2) -7c0(1)]/6. Thus, the optimal response of the follower if costs are high 
is never to adopt. Given this behavior by the follower, the functions L, F, 
and M can then be defined as before. They represent the expected returns of 
an innovator firm to leading, following and tying. 

What effect does a small, positive value of p have on the configuration 
given in figs. la and lb? The substantive changes occur after z where the 
possibility of failure means that the follower is not certain to adopt 
immediately after the leader. Hence, the expected return functions are not 
identical after ? There are then two possibilities. Either L lies below F after 
For it lies everywhere above F.4 It can be shown that a sufficient condition 
for the former case to hold is that rcr( 1) < 6k, and for the latter, rci(1) > 6k + 

7bw 
The case in which F shifts up relative to L corresponds to a situation in 

which technologies are either ‘good’ or ‘bad’. A technology is ‘good’ if it is 
worth adopting irrespective of the adoption decisions of other firms. It is 
‘bad’ when the fixed costs of adoption cannot be recovered even if the other 
firms does not adopt. This is the condition given above. It ensures that the 
first adopter takes a loss ex post whenever adoption costs turn out to be 
high, so following can be better than leading. The other case corresponds to 
a situation in which the first adopter makes positive profits net of adoption 
costs in the high cost state, and they exceed those earned by the follower. In 
this case, its always better to lead than follow. 

How do these changes in the relationships between the expected return 
functions affect equilibrium behavior? If T1 continues to be the global 
maximum of L and L(T,) exceeds F(T,), no innovator has any incentive to 
wait beyond Tl to adopt. Consequently, the substantive changes occur in a 
period that is reached only if both firms are imitators. But, in that case, the 
changes are not relevant since adoption never occurs. Hence, if preemption 
gains are large then, for relatively small values of p, Proposition 1 continues 
to apply with L and F interpreted as expected return functions. 

4M always lies below both L and F. The reason is that, if adoption costs turn out to be high, 
the returns to both the leader and the follower are higher if only one of them adopts than if both 
adopt simultaneously. The follower earns more because it is able to avoid adopting a technology 
which, given adoption by the other firm, is unprofitable. The leader earns more because its profit 
flow is higher if the other firm does not adopt. 
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The situation is different when 7” is the global maximum of L, that is, 
when preemption gains are relatively small. Joint adoption at T, cannot be 
an equilibrium since, depending upon the type of technology, either a firm 
wants to preempt an instant before or it wants to wait an instant to 
determine whether the technology is worth adopting. The analysis of these 
cases proceeds in much the same manner as in the preceding section. It is 
not difficult to show that the equilibrium must once again be in mixed 
strategies, and that the distributions must satisfy eq. (3.8). Rather than repeat 
the derivations, I will simply describe the equilibrium for each case and its 
properties. 

The equilibrium for technologies that are either ‘good’ or ‘bad’ involves 
delay until T2. After T,, innovators face a tradeoff: each prefers to follow 
rather than lead but, if it has to lead, it prefers to do so earlier rather than 
later.5 To resolve this conflict, they randomize continuously according to 
(3.8). Here L: measures the cost, rather than the gain, from waiting, and 
F(t) --L(t) measures the gain, rather than the loss, from going second. As time 
passes and no adoption occurs, each innovator’s conviction that its rival is 
an imitator grows and, with it, the desire to adopt. Each adopts with 
probability one in finite time. Thus, as in the deterministic case, rents from 
delayed adoption are positive and successful technologies are adopted more 
or less simultaneously. But, in contrast to FT’s result, the adoption time is 
not efficient. Firms delay too long as each tries to persuade its rival to adopt 
first so that it can benefit from the information externality. 

The equilibrium for technologies where leading always yields higher 
expected returns than following prior to T,, is essentially the same as that of 
Proposition 1. The only difference is that the reputation-building period 
occurs prior to T, rather than T,, with r determined by the equation 
4=1(r, T2).6 Not surprisingly, the incentive to preempt reasserts itself and 
some rents are dissipated through early adoption. 

5. Conclusion 

In their seminal paper, Kreps et al. (1982) demonstrated how incomplete 
information and reputation effects can be used to generate cooperative 
outcomes in preemption games such as the finitely repeated Prisoner’s 
Dilemma. I have used their approach to argue that preemptive adoption may 
not be as pervasive a phenomena as the literature on the timing of adoption 
suggests. It is not unreasonable to suppose that firms may have doubts about 

sGames with this kind of payoff structure are commonly called Wars of Attrition. 
6This is the solution if L(r) exceeds I.(T,). If this condition is not met, _one can show-that the 

reputation-building period consists of two disjoint intervals, [z. TJ and [T, TJ, where Tdenotes 
the time between T1 and T2 that returns from leading are equal to those earned at Tr. The value 
of r is then determined by the equation 4 = I(r, Tr) + I( 7; TJ. 
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each other’s desire or ability to adopt first. If so, they can build on these 
doubts to avoid the debilitating effects of competi~on. This point receives 
empirical support from the work by McKelvey and Palfrey (1991). 

It is also of relevance to the debate on the persistence of monopoly. 
Gilbert and Newberry (1982) have argued that the monopolist always 
preempts the entrant and adopts a new technology just before it becomes 
profitable for the entrant to do so. Reinganum (1984) has shown that this 
preemptive outcome depends critically on the monopolist knowing precisely 
when the entrant intends to adopt. If success in R&D is stochastic, then the 
entrant is more likely to adopt first because it earns more from adoption (i.e., 
most of its profit is a transfer from the monopolist). A similar situation arises 
if firms have doubts about each other’s innovative capabilities. I have shown 
elsewhere [Hendricks (1987)] that the monopolist and entrant will behave as 
they do in Proposition 1: they delay adoption for a period of time before 
randomizing. Furthermore, as in Reinganum’s model, the entrant is more 
likely to adopt first than the incumbent. 

Appendix 

In this appendix, I state and prove the lemma which establishes necessary 
conditions for an equilibrium. For notational convenience, time is normalized 
so that To is equal to 0. Define 

z = sup@ < 7-r ( 3,3t’ <t, G’(t) - G’(t) = O> 

to be the end of the last interval prior to Tr during which one of the firms 
adopts with probability 0. 

~~ f. (G1, G’) is aa e~~ili~ri~rn oaly iJ for i = 1,2: 
(i) G’(O) < 1 and r’(O). rj(0) =O, 
(ii) G’ is continuous on (0, T,), and r>O implies G”(t) =0 for 02 t<z. 
(iii) G’( T1) = 1 and ri( Tr) * I’( TX) = 0. 

ProoJ: (i) Suppose an innovator firm i adopts with probability 1 at time 0. 
Then, since F(O)>M(O), the optimal response of an innovator firm j at time 
0 is to wait. If firm i fails to enter at time 0, then firm j concludes that tirm i 
is an imitator. Given this belief, the optimal strategy of an innovator firm j 
is to delay adoption until time 7;. But then the payoff to an innovator firm i 
from waiting at time 0 and adopting at some later date prior to T1 is larger 
than its payoff from adopting at time 0. Hence, it waits at time 0, 
contradicting the original hypoth~is. 

The second part of condition (i) follows from right-continuity of G’ and the 
fact that M(0) <F(O). 

J.I.O.- F 
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(ii) These properties are proved in Hendricks and Wilson (1986). 
(iii) Note first that G’(t) = G’(T,) for all t > T,, i= 1,2, since I: is decreasing 

on this range and L=F=M. For any t~~[t T,), 

+ (1 - G’( T,w(T,) - WI l + cTmxT2) - WI 

22 I[YT,) - w)ld(o) 
>O. 

Hence, G’(t) = G’( 0 for all t E [ii; T,), i = 1,2. 
On the interval (T,, ?‘), f: is strictly decreasing and L is greater than f; and 

M. Condition (ii) then implies that there is an E>O suEciently small, such 
that, for any u E(& ;i‘> 

+(l-G’(t))CL(t)-L(T,-&)I +q'(O)[L(t)-L(T,-E)] 1 
25 rat) - L(T, - ~)lqj(o) 

CO. 

Thus, G’(t) = G’(T,) for all t E (T,, 5, i = 1,2. 

Putting these results together implies that ri(T2)= 1 - G’(I;) for each 
i = 1,2. But, for E > 0 suffkiently small, 

This implies #( TJ = 0. Q.E.D. 
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